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Harmonic Interpolation and Lie Groups

W.-H. Steeb1,2 and A. Hardy1

Received

A harmonic interpolation of a polygon (for odd and even numbers of points forming
the polygon) used in computer graphics is derived from the primary permutation matrix
using the spectral decomposition of the matrix. This matrix can be used to generate an
orthonormal basis in the Hilbert space of all n × n matrices over C. The connection
with Lie groups is discussed.
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1. INTRODUCTION

In computer graphics and interpolation, one of the most important tasks is
to find a smooth curve (harmonic interpolation) through a number of n-ordered
points (a polygon) X = (X0, X1, . . . , Xn−1)T given in the Hilbert space Rd, i.e.,
X j ∈ Rd. In the construction the starting point is the n × n primary permutation
matrix and its spectral decomposition. In this paper we describe the construction
of the harmonic interpolation starting from the primary permutation matrix and the
spectral representation of this matrix. We are not only going to study the case with
an odd number of points forming a polygon (Schuster, 2001), but also the case
with an even number of points. furthermore we show that this matrix can be used
to generate an orthonormal basis in the Hilbert space of all n × n matrices over
C with the scalar product 〈A|B〉 := tr(AB∗)/n. The connection with Lie groups
is also discussed. The primary permutation matrix is also the starting point in the
construction of maximally entangled quantum states in finite dimensional Hilbert
spaces (Ban, 2002; Hardy and Steeb, 2001; Hardy et al., 2003; Steeb and Hardy,
2004). Another closely related problem is to consider a system composed by n
identical masses placed at the vertices of a regular n-gon and the corresponding
gravitational field (Bang and Elmabsout, 2003).
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2. PRIMARY PERMUTATION MATRIX AND PROPERTIES

The n × n primary permutation matrix U is given by

U =




0 1 0 . . . 0

0 0 1 . . . 0

0
...

...
...

...

0 0 0 . . . 1

1 0 0 . . . 0




. (1)

It is an n × n circulant matrix. An arbitrary n × n circulant matrix C (Steeb, 1997)
is given by

C =




c0 c1 c2 . . . cn−1

cn−1 c0 c1 . . . cn−2

cn−2 cn−1 c0 . . . cn−3

...
...

...
...

...

c1 c2 c3 . . . c0




. (2)

Let us first summarize the properties of the matrix U. The set of matrices
{U, U 2, . . . , U n = In} is a subgroup of the group of all n × n permutation matri-
ces under matrix multiplication. They form a cyclic group of order n. An n × n
matrix D is circulant if and only if D = U DU T, where U is given by (1). Let C
be a circulant matrix given by (2) and let

f (λ) = c0 + c1λ + . . . + cn−1λ
n−1. (3)

Then C = f (U ), where U is the primary permutation matrix. The matrix C is nor-
mal, that is C∗C = CC∗. The eigenvalues of C are f (ωk) where k = 0, 1, . . . , n −
1 and ω := exp(2π i/n). For the determinant we have det(C) = f (ω0) f (ω1) . . .

f (ωn−1) . The matrix F∗CF is a diagonal matrix, where F is the unitary matrix
with the (j, k)-entry equal to ω( j−1)(k−1), for j, k = 1, . . . , n.

Consider the n × n unitary diagonal matrix

V = diag(1, ω, ω2, . . . , ωn−1) (4)

where ω = exp(2π i/n) and thus ωn = 1 Then the set {U j V k : j, k = 0, 1, . . . ,
n − 1} forms an orthonormal basis in the Hilbert space of all n × n matrices over
C with the scalar product 〈A|B〉 := tr(AB∗)/n. Obviously, the matrices U j V k

are unitary, since U and V are unitary. For n = 2 we find the orthonormal basis
{I2, σx , σz , iσy}, where σx , σy , σz denote the Pauli spin matrices. We also have
U V = ωV U . This relation plays an important role in quantum theory in finite
dimensional Hilbert spaces.
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3. SPECTRAL DECOMPOSITION

For our construction we need the eigenvalues and normalized eigenvectors of
U . The eigenvalues are given by λ0 = 1, λ1, λ2, . . . , λn−1 with

λ := exp(2π i/n) (5)

The normalized eigenvectors are given by

|θ j 〉 = 1√
n

(1, exp(−i2π j/n), exp(−i4π j/n), . . . , exp(−i2π (n − 1) j/n))T (6)

where j = 0, 1, . . . , n − 1. Thus for the eigenvalue 1 of U we find the normalized
eigenvector

|θ0〉 = 1√
n

(1, 1, . . . , 1)T. (7)

The eigenstates {|θ j 〉 : j = 0, 1, . . . , n − 1} and the standard basis {|e j 〉}( j = 0,
1, . . . , n − 1) in Cn are connected by the discrete Fourier transform

|θ j 〉 = 1√
n

n−1∑
k=0

exp(−ikθ j )|ek〉, |ek〉 = 1√
n

n−1∑
j=0

exp(ikθ j )|θ j 〉 (8)

where θ j := 2π j/n. Thus the spectral representation of U can be written as

U =
n−1∑
j=0

λ j Pj ≡
n−1∑
j=0

λ j |θ j 〉〈θ j |. (9)

The projection matrix Pj = |θ j 〉〈θ j | can be expressed using U k . Since Pj Pk = 0
for j �= k and P2

j = Pj we find

U k =
n−1∑
j=0

λ jk Pj , k = 1, 2, . . . , n. (10)

Thus we calculated the Fourier transform of the projection matrices. For k = n we
have U n = In and the completeness relation

In =
n−1∑
j=0

Pj . (11)

The inverse of the matrix (λ jk) is given by 1
n (λ− jk). Thus

Pj = 1

n

n−1∑
k=0

λ− jkU k , j = 0, 1, . . . , n − 1. (12)
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4. HARMONIC INTERPOLATION

For the construction of the harmonic interpolation in computer graphics we
proceed as follows. We embed the matrices U k into a real Lie group (Steeb, 1996).
Thus we have to consider the cases n = 2m + 1 and n = 2m where m is a positive
integer. In the second case we have λ0 = 1 and λm = −1. Furthermore we define
P− j := Pn− j . The projection matrices are therefore real.

We consider first the case n = 2m + 1 (Schuster, 2000). We obtain by replac-
ing k by t

U (t) = P0 +
m∑

j=1

(λ j t Pj + λ− j t P− j ) ≡ P0 +
m∑

j=1

(e2π i j t/n Pj + e−2π i j t/n P− j ).

(13)

The unitary matrices U (t) are n-periodic, i.e., U (t + n) = U (t). We replace t by
nt and therefore we reduce the period to 1. Thus U (t) takes the form

Ũ (t) = P0 +
m∑

j=1

(e2π i j t Pj + e−2π i j t P− j ), t ∈ R. (14)

Thus Ũ (t + 1) = Ũ (t) and Ũ (k/n) = U k for k = 0, 1, . . . , n − 1. The n × n ma-
trices Ũ (t) form a one-dimensional abelian unitary group (Lie group) with
Ũ (0) = In and Ũ (t + τ ) = Ũ (t)Ũ (τ ). Owing to (12) we can write Ũ (t) as

Ũ (t) = 1

n

n−1∑
k=0

(
1 +

m∑
j=1

(
e2π i j(t−k/n) + e−2π i j(t−k/n)

))
U k . (15)

We define

σk(t) ≡ σ (t − k/n) := 1

n

(
1 +

m∑
j=1

(
e2π i j(t−k/n) + e−2π i j(t−k/n)

))
. (16)

Using exp(iα) ≡ cos(α) + i sin(α),

1 + 2
m∑

j=1

cos( jα) ≡ sin((m + 1/2)α)

sin(α/2)
(17)

and with n = 2m + 1 we find

σk(t) = sin(πn(t − k/n))

n sin(π (t − k/n))
, k = 0, 1, . . . , n − 1. (18)

Equation (17) was used by Lejeune-Dirichlet for his proof of Fourier’s formula
(Lejeune-Dirichlet, 1829). Thus we can write

Ũ (t) =
n−1∑
k=0

σk(t)U k . (19)
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We have the properties
n−1∑
k=0

σk(t) = 1,
n−1∑
k=0

σ 2
k (t) = 1. (20)

Thus the functions σk(t) and σ 2
k (t) provide a partition of unity. Now let X =

(X0, X1, . . . , Xn−1)T be the vector which describes the polygon. Then

X(t) = Ũ (t)X =
n−1∑
k=0

σ (t − k/n)U k X. (21)

The curve which describes our closed smooth curve is given by

X�(t) =
n−1∑
k=0

σ (t − k/n)Xk+� =
n−1∑
k=0

σ (t + �/n − (k + �)/n)Xk+�

= X0(t + �/n) (22)

where (k + �) is calculated mod n. Hence for all � it represents the same curve and
we can write

X (t) =
n−1∑
k=0

σ (t − k/n)Xk , t ∈ [0, 1]. (23)

Thus this curve (23) interpolates the points of the given polygon smoothly. We
consider now the case n = 2m. For this case we can write

U k = P0 + (−1)k Pm +
m−1∑
j=1

(λ jk Pj + λ− jk P− j ). (24)

If we replace the discrete variable k by the real variable t, we find the factor
(−1)t ≡ eπit . The other terms are real. Thus the Lie group we would find is not real
and therefore cannot be used directly for the harmonic interpolation in computer
graphics. Since the function U(t) will be continuous in the complex domain and
go through the points of the polygon, the real part will also be continuous and go
through the points of the polygon. A similar calculation as described for the case
n = 2m + 1 given above yields (t ∈ [0, 1])

Ũ (t) = 1

n

n=1∑
k=0

cos(π (nt − k))U k

+ i

n

n−1∑
k=0

sin(π (nt − k))U k +
n−1∑
k=0

ξk(t)U k (25)

where

ξ (t) := sin(π t(n − 1))

n sin(π t)
, ξk(t) := ξ

(
t − k

n

)
. (26)
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Thus our smooth curve in the even case which goes through all the points of the
polygon is

X (t) =
n−1∑
k=0

(
1

n
cos(π (nt − k)) + ξk(t)

)
Xk . (27)

The curves described above are stable in the sense that making a small change in the
position of a point will only cause a small change of the curve in the neighbourhood
of this point. For an example of harmonic interpolation, we illustrate how a unit
circle centered at the origin can be parameterized using harmonic interpolation. We
use four control points: X0 = (1, 0), X1 = (0, 1), X2 = (−1, 0) and X3 = (0, −1).
Then

p(t) =
3∑

k=0

(
1

n
cos(π (nt − k)) + ξk(t)

)
Xk . (28)

After simplification we get

p(t) =
(

cos 2π t

sin 2π t

)
. (29)

The usefulness of harmonic interpolation is demonstrated when compared to Bézier
curves. It has been shown that Bézier curves cannot be used to draw a circle (Farin,
1996). A circle can however be described by three rational Bézier curves. A Java
application and Java applet which draw these curves is available from the authors.
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